

Report ID 2020-W31 -TSSOP8

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMS/20/12302

Analog, MEMS & Sensors (AMS)

New material set in ST Bouskoura for General Purpose Analog products in TSSOP8 packages

WHAT:

Progressing on the activities related to quality continuous improvement, ST is glad to announce a new material set for General Purpose Analog products in TSSOP8 package produced in ST Bouskoura.

The goal of this PCN is to qualify new material set as described below and to move to brand new equipments replacing obsolete machines.

This new set of material will improve our product robustness.

Material	Current process	Modified process	Comment
Diffusion location	ST Ang Mo Kio (Singapore)/ UMC / ST Agrate	ST Ang Mo Kio (Singapore)/ UMC / ST Agrate	No change
Assembly location	ST Bouskoura	ST Bouskoura	No change
Molding compound	Sumitomo G630AY	Sumitomo G700KC	Move to high reliability compound
Die attach	Ablestick 8601-S25	Ablestick 8601-S25	No change
Leadframe	Copper preplated NiPdAgAu standard density	Copper preplated NiPdAu standard density	Reducing risk of discoloration spo- radically encountered
Wire	Copper 1 mil	Copper 1 mil	No change
Equipment	20 years old equipments DA ASM AD889 WB ASM Eaggle 60	Latest generation of equip- ment DA ASM 832i WB KnS Connex ELA	To reduce risk of sporadic excursion Traceability thanks to 2D code on leadframe
Traceability	Assy lot	2D code allowing single die traceability	
			TO be implemented end Q4/2020

Please find more information related to material change in the table here below

WHY:

This material change will contribute to ST's continuous quality product improvement and ensure a consistent assembly process through all the TSSOP production lines.

HOW:

The qualification program consists mainly of comparative electrical characterization and reliability tests.

You will find here after the qualification test plan which summarizes the various test methods and conditions that ST uses for this qualification program.

WHEN:

The new material set will be implemented in Q3/2020 in Bouskoura.

Marking and traceability:

Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales type, date code and lot number.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets.

There is -as well- no change in the packing process or in the standard delivery quantities. Shipments may start earlier with the customer's written agreement.

Reliability Qualification plan

New Halogen free material set for TSSOP in

ST Bouskoura

General	Information	Loca	tions
Product Line	0158, 0393, 0922, 1022, 3702 Low power Dual op amp bipo- lar, Low power Dual compara-	Wafer fab	ST Singapore
Product Description	tor bipolar, Rail to rail Dual op amp, biCMOS, Current sense amplifier <i>LM2904PT, LM2903PT</i> ,	Assembly plant	ST Bouskoura (Morocco)
P/N Product Group	TS922IPT, TSC1021IPT, TS3702IPT AMS	Reliability Lab	ST Grenoble, ST Bouskoura
Product division	General Purpose Analog &RF		
Package	TSSOP8		
Silicon Process technology	Bipolar, , HF2CMOS, BCD3S, HC1PA		

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPI	LICABLE AND REFERENCE DOCUMENTS	
		SSARY	
		ABILITY EVALUATION OVERVIEW	
-	3.1	OBJECTIVES	
		CONCLUSION	
4	DEVI	ICE CHARACTERISTICS	
	4.1	DEVICE DESCRIPTION	
	4.2	CONSTRUCTION NOTE	
5	TEST	IS RESULTS SUMMARY	
	5.1	TEST VEHICLE	
		TEST PLAN AND RESULTS SUMMARY	
6	ANN	EXES	
	6.1	Device details	
	6.2	TESTS DESCRIPTION	

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test	
РСВ	Printed Circuit Board	
SS	Sample Size	

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 **Objectives**

To qualify a new material set for products in TSSOP8 package produced in ST Bouskoura

3.2 Conclusion

Qualification Plan requirements have to be fulfilled without issue. It is stressed that reliability tests have to show that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests have to demonstrate the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 **Device description**

LM2904PT		
57	life.augmented	

LM2904, LM2904A LM2904W, LM2904AW Datasheet

Low-power dual operational amplifier

Ð	
DFN8 2x2	

т99

1990	9999
OP8	3

Features

- Frequency compensation implemented internally
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)
- Very low supply current/amplifier, essentially independent of supply voltage
- Low input bias current: 20 nA (temperature compensated)
- Low input offset current: 2 nA
- Input common-mode voltage range includes negative rail
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V to [(V_{CC} ⁺) -1.5 V]

Description

This circuit consists of two independent, high gain operational amplifiers (op amps) that have frequency compensation implemented internally. They are designed specifically for automotive and industrial control systems. The circuit operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from the standard 5 V which is used in logic systems and easily provides the required electronic interfaces without requiring any additional power supply.

In linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply.

Maturity status link				
Enhanced Enhanced V _{IO} ESD				
LM2904				
LM2904A	1			
LM2904W		1		
LM2904AW	1	1		

Related products			
TSB572	Dual op-amps for low- power consumption (380 µA with 2.5 MHz GBP)		
LM2902 LM2902W	Quad op-amps version		
LM2904WH LM2904AH	High temperature version (150 °C)		

LM2903PT,

LM2903

Low-power dual voltage comparator

Datasheet - production data

D SO8 MiniSO8 (plastic (plastic micropackage) micropackage) P DFN8 2x2 mm (plastic micropackage)

 See the LM2903W for similar devices with higher ESD performances

 See the LM2903H for similar devices with operating temperature up to 150 °C

Description

Related products

This device consists of two independent lowpower voltage comparators designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

In addition, the device has a unique characteristic in that the input common-mode voltage range includes the negative rail even though operated from a single power supply voltage.

Features

(thin shrink small

outline package)

- Wide single supply voltage range or dual supplies +2 V to +36 V or ±1 V to ±18 V
- Very low supply current (0.4 mA) independent of supply voltage (1 mW/comparator at +5 V)
- Low input bias current: 25 nA typ.
- Low input offset current: ±5 nA typ.
- Input common-mode voltage range includes negative rail
- Low output saturation voltage: 250 mV typ. (I_O = 4 mA)
- Differential input voltage range equal to the supply voltage
- TTL, DTL, ECL, MOS, CMOS compatible outputs
- Automotive qualification

TS922IPT

TS922, TS922A

Datasheet

Flip-chip with backcoating

TSSOP8

Features

.

- Rail-to-rail input and output
- Low noise: 9 nV/\/Hz
- Low distortion
- High output current: 80 mA (able to drive 32 Ω loads)
- High-speed: 4 MHz, 1 V/µs
- Operating from 2.7 to 12 V
- Low input offset voltage: 900 µV max. (TS922A)
- ESD internal protection: 2 kV
- Latch-up immunity

Applications

- · Line drivers and actuator drivers
- Portable speakers
- · Instrumentation with low noise as key factor
- · Multimedia systems and portable equipments

Description

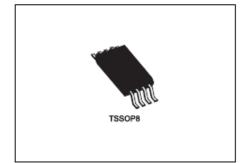
The TS922 and the TS922A devices are rail-to-rail dual BiCMOS operational amplifiers optimized and fully specified for 3 V and 5 V operations. These devices have high output currents which allow low-load impedances to be driven.

Very low noise, low distortion, low offset, and a high output current capability make these devices an excellent choice for high quality, low voltage, or battery operated audio systems.

The devices are stable for capacitive loads up to 500 pF.

Product status link

TS922 and TS922A


TSC1021IPT

TSC1021

High-side current sense amplifier

Datasheet - production data

Features

- Wide common-mode operating range independent of supply: 2.8 V to 30 V
- Wide common-mode survival range: -32 V to 60 V (reversed battery and load-dump conditions)
- Maximum input offset voltage:
 ±1.5 mV for T_{amb} = 25 °C
 - ±2.3 mV for -40 °C < T_{amb} < 125 °C
 - Maximum total output voltage error:
 - ±1.5 % for T_{amb} = 25 °C
- ±2.5 % for -40 °C < T_{amb} < 125 °C
- Maximum variation over temperature:
 - dV_{os}/dT = 8 µV/°C
 - dV_{out}/dT = 100 ppm/°C
- Low current consumption: I_{cc} max = 300 µA
- -40 °C to 125 °C operating temperature
- Internally fixed gain: 20 V/V, 50 V/V
- EMI filtering

Related products

 See TSC103 for higher common-mode operating range (2.9 V to 70 V)

Applications

- Automotive current monitoring
- Notebook computers
- Server power supplies
- Telecom equipment
- Industrial SMPS
- Current sharing
- LED current measurement

Description

The TSC1021 measures a small differential voltage on a high-side shunt resistor and translates it into a ground-referenced output voltage.

The TSC1021 has been specifically designed for automotive conditions: load-dump protection up to 60 V, reverse-battery protection up to -32 V, ESD protection up to 4 kV and internal filtering for EMI performance.

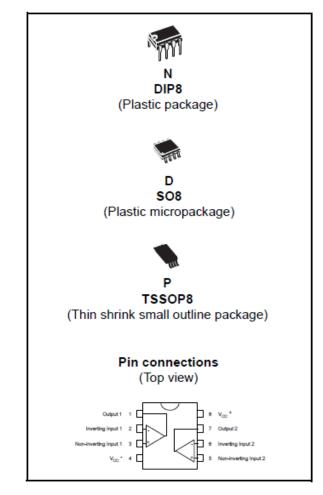
Input common-mode and power supply voltages are independent: the common-mode voltage can range from 2.8 to 30 V in operating conditions and up to 60 V in absolute maximum ratings while the TSC1021 can be supplied by a 5 V independent supply line.

The TSC1021 is housed in a tiny TSSOP8 package and integrates a buffer that provides low impedance output to ease interfacing and avoid accuracy losses. The overall device current consumption is lower than 300 μ A.

TSX3702IPT

TS3702

Micropower dual CMOS voltage comparators


Features

- Push-pull CMOS output (no external pull-up resistor required)
- Extremely low supply current: 9µA typ / comparator
- Wide single supply range: 2.7V to 16V or dual supplies (±1.35V to ±8V)
- Extremely low input bias current: 1pA typ
- Extremely low input offset currents: 1pA typ
- Input common-mode voltage range includes GND
- High input impedance: 10¹²Ωtyp
- Fast response time: 2µs typ for 5mV overdrive
- Pin-to-pin and functionally compatible with bipolar LM393

Description

The TS3702 is a micropower CMOS dual voltage comparator with extremely low consumption of 9μ A typ / comparator (20 times less than bipolar LM393). The push-pull CMOS output stage allows power and space saving by eliminating the external pull-up resistor required by usual open-collector output comparators.

Thus response times remain similar to the LM393.

4.2 Construction note

	P/N LM2904PT	P/N LM2903PT	P/N TS922IPT	P/N TSC1021IAIPT	P/N TS3702IPT
Wafer/Die fab. information	-	-	-		
Wafer fab manufacturing location	ST Singapore				
Technology	Bipolar	Bipolar	HF2CMOS	BCD3S	HC1PA
Die finishing back side	RAW SILICON				
Die size (microns)	1070x1010µm ²	950x870µm ²	1720x1190µm ²	1280x1750µm ²	1366x1136µm ²
Bond pad metallization layers	AlSiCu	AlSiCu	AlSiCu	AlSiCu	AlSi
Passivation type	Nitride	Nitride	P-VAPOX/NITRIDE	USG-PSG-SiON-PIX	HDP/TEOS/SiN/Polyimide
	-	Wafer Testing (EWS) information		-
Electrical testing manufacturing loca- tion	ST Singapore				
		Assembly infor	mation		
Assembly site	ST Bouskoura				
Package description	TSSOP8	TSSOP8	TSSOP8	TSSOP8	TSSOP8
Molding compound	EME G700KC				
Frame material	Cu	Cu	Cu	Cu	Cu
Die attach process	Epoxy Glue				
Die attach material	8601S-25	8601S-25	8601S-25	8601S-25	8601S-25
Wire bonding process	Thermosonic ball bonding				
Wires bonding materials/diameters	Cu 1 mil				
Lead finishing process	electroplating	electroplating	electroplating	electroplating	electroplating
Lead finishing/bump solder material	NiPdAu	NiPdAu	NiPdAu	NiPdAu	NiPdAu
Final testing information					
Testing location	ST Bouskoura				

5 TESTS PLAN SUMMARY

5.1 Test vehicle

Lo t #	Process/ Package	Product Line	Comments
1	Bipolar/TSSOP8	0158	
2	Bipolar/TSSOP8	0393	
3	HF2CMOS/TSSOP8	0922	
4	BCD3S/TSSOP8	1022	
5	HC1PA/TSSOP8	3702	

5.2 Test plan and results summary

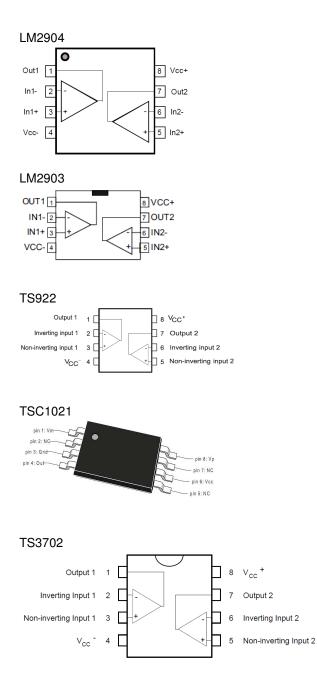
						Failure/SS						
Test	PC	Std ref.	Conditions	SS	Steps	Lot 1 0158	Lot 2 0393	Lot3 0922	Lot 4 1022	Lot5 3702	Note	
					-		-		-			
HTB/		JESD22			168 H	77	77	77	77	77		
HTOL	Ν	A-108	$Ta = 150^{\circ}C \text{ or } 125^{\circ}C, BIAS$		1000 H	77	77	77	77	77		
		HISD 00										
ELFR	Ν	JESD22 A-008	Ta = 125°C, BIAS			800		800	800	800		
					168 H	77	77	77	77	77		
HTSL	Ν	JESD22	$Ta = 150^{\circ}C$		500 H	77	77	77	77	77		
mbl		A-103	14 100 0		1000 H	77	77	77	77	77		
					<u> </u>		<u> </u>	<u>I</u>				
РС		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times		Final	Below sample + 22units	Below sample + 22units	Below sample + 22units	Below sample + 22units	Below sample + 22units		
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C		96 H	77	77	77	77	77		
					100 cy	77	77	77	77	77		
TC	Y	JESD22	Ta = -65° C to 150° C		200 cy	77	77	77	77	77		
ic	1	A-104	1a = -05 C to 150 C		500 cy	77	77	77	77	77		
					1000cy	77	77	77				
		JESD22	IESD22			168 H	77		77	77	77	
THB	Y	A-101	Ta = 85°C, RH = 85%, BIAS		500 H	77		77	77	77		
					1000 H	77		77	77	77		
Other Tes	sts				1							
		AEC Q101-										
ESD	Ν	001, 002 and 005	CDM			3	3	3	3	3		
		005										
SD	Ν		After ageing 8h and 16h			Х	Х	Х				
WBS	N		Wire bond Shear			X	X	X				
WBP	N		Wire bond Pull			X	X	X				
PD	N		Physical dimension			X X	X X	X				
ED	Ν		Electrical distribution			Х	X	Х				

This qualification is following the TSSOP14 PCN AMS/20/12117 on which we implemented the same changes. See below the results already available for TSSOP14

5.3 Test vehicle

Lo t #	Process/ Package	Product Line	Comments
1	Bipolar/TSSOP14	0124	CZ01308ARQ
1	Bipolai/1550114	0124	CZ01302CRR
2	HF5CMOS/TSSOP14	V994	CZ9510KTRF
2		V 994	CZ9510KTRG
3	HVG8A/TSSOP14	UY43	CZ9510KURL,
5		0143	CZ9510KURN

5.4 Test plan and results summary


						Failure/SS					
Test	PC	Std ref.	Conditions	SS	Steps	Lot 1 0124	Lot 4 V994	Lot5 UY43			Note
			-	=	-		-	-	-		
					168 H	0/77	0/77	0/77			
HTB/	Ν	JESD22	Ta = 150°C or 125°C, BIAS		500 H	0/77	0/77	0/77			
HTOL	IN	A-108	1a = 150 C of 125 C, BIAS		1000 H	0/77	0/77	0/77			
					168 H	0/50			2x0/50	2x0/50	
		IESDaa			500 H	0/50			2x0/50	2x0/50	
HTSL	Ν	JESD22 A-103	$Ta = 150^{\circ}C$		1000 H	0/50			2x0/50	2x0/50	
					100011				2x0/50	2x0/50	
	LI				<u>l</u>		<u>l</u>	1		[
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times		Final	PASS	PASS	PASS			
AC/ UHAST	Y	JESD22 A-102	Pa=2Atm / Ta=121°C		96 H	2x0/77	2x0/77	2x0/77			
		JESD22 A-104			100 cy	0/77	2x0/77	2x0/77			
TC	Y				500 cy	0/77	2x0/77	2x0/77			
ic	1				1000cy	0/77	2x0/77	2x77			
		WIGE AA			168 H	0/77	0/77	0/77			
THB	Y	JESD22 A-101	JESD22 A-101 Ta = 85°C, RH = 85%, BIAS		500 H	0/77	0/77	0/77			
					1000 H	70/7	0/77	0/77			

6 ANNEXES

6.1 **Device details**

6.1.1 Pin connection

6.2 Tests Description

Test name	Description	Purpose			
Die Oriented					
HTOL High Temperature Operating Life HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating con- dition in an accelerated way. The typical failure modes are related to, sili- con degradation, wire-bonds degradation, ox- ide faults.			
HTRB High Temperature Reverse Bias HTFB / HTGB High Temperature Forward (Gate) Bias	The device is stressed in static configura- tion, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffu- sion process and internal circuitry limita- tions;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating con- dition in an accelerated way. To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout			
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the pack- age materials, sometimes higher than the max. operative temperature.	sensitivity to surface effects. To investigate the failure mechanisms acti- vated by high temperature, typically wire- bonds solder joint ageing, data retention faults, metal stress-voiding.			
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.			
Package Oriented					
PC Preconditioning	The device is submitted to a typical temper- ature profile used for surface mounting de- vices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" ef- fect and delamination.			
AC Auto Clave (Pres- sure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.			
TC Temperature Cy- cling	The device is submitted to cycled tempera- ture excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the dif- ferent thermal expansion of the materials in- teracting in the die-package system. Typical failure modes are linked to metal displace- ment, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.			

Report ID 2020-W31 -TSSOP

Test name	Description	Purpose	
TF / IOL Thermal Fatigue / Intermittent Oper- ating Life	The device is submitted to cycled tem- perature excursions generated by power cycles (ON/OFF) at T ambient.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materi- als interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds fail- ure, die-attach layer degradation.	
THBThe device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambi- ent temperature and relative humidity.		To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.	
Other			
ESD Electro Static Dis- charge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his suscep- tibility to damage or degradation by exposure to electrostatic discharge.	
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.	

ANNEX 1 Preliminar results

Bonding Strength a T0

Bond shear test

	0158
Ball shear average (g)	38.2
Ball shear Min (g)	34.9
Ball shear Max (g)	40.4
Cpk	3.32
Failure mode	OK

Pull Test

	0158
Pull test average (g)	14.7
Pull Test Min (g)	11.4
Pull test Max (g)	16.3
Cpk	3.31
Failure mode	ОК